United States Patent | 6,126,794 |
Chambers | October 3, 2000 |
An apparatus for producing orthohydrogen and/or parahydrogen. The apparatus includes a container holding water and at least one pair of closely-spaced electrodes arranged within the container and submerged in the water. A first power supply provides a particular first pulsed signal to the electrodes.
A coil may also be arranged within the container and submerged in the water if the production of parahydrogen is also required. A second power supply provides a second pulsed signal to the coil through a switch to apply energy to the water.
When the second power supply is disconnected from the coil by the to switch and only the electrodes receive a pulsed signal, then orthohydrogen can be produced.
When the second power supply is connected to the coil and both the electrodes and coil receive pulsed signals, then the first and second pulsed signals can be controlled to produce parahydrogen. The container is self-pressurized and the water within the container requires no chemical catalyst to efficiently produce the orthohydrogen and/or parahydrogen. Heat is not generated, and bubbles do not form on the electrodes.
Inventors: | Chambers; Stephen Barrie (Alberta, CA) |
Assignee: | Xogen Power Inc. (Calgary, CA) |
Appl. No.: | 105023 |
Filed: | June 26, 1998 |
Current U.S. Class: | 204/230.5; 204/230.6; 204/230.7; 204/230.8; 204/270; 204/272; 204/278; 204/293; 204/DIG9 |
Intern'l Class: | C25B 015/00; C25B 009/00; C25B 011/04 |
Field of Search: | 204/230.6,230.7,242,267,270,272,278,230.5,DIG. 9,230.8 |
3311097 | Mar., 1967 | Mittelstaedt | 204/278. |
3980053 | Sep., 1976 | Horvath. | |
4107008 | Aug., 1978 | Horvath. | |
4184931 | Jan., 1980 | Inoue | 204/129. |
4316787 | Feb., 1982 | Themy | 204/278. |
4384943 | May., 1983 | Stoner et al. | |
4394230 | Jul., 1983 | Puharich. | |
4470894 | Sep., 1984 | Dyer. | |
4599158 | Jul., 1986 | Ofenloch | 204/229. |
4755305 | Jul., 1988 | Fremont et al. | |
4798661 | Jan., 1989 | Meyer | 204/278. |
5205994 | Apr., 1993 | Sawamoto et al. | |
5304289 | Apr., 1994 | Hayakawa. | |
5324398 | Jun., 1994 | Erickson et al. | |
5376242 | Dec., 1994 | Hayakawa. | |
5399251 | Mar., 1995 | Nakamats. | |
5435894 | Jul., 1995 | Hayakawa. | |
5599437 | Feb., 1997 | Taylor et al. | |
5614078 | Mar., 1997 | Lubin et al. | |
5632870 | May., 1997 | Kucheroy | 204/278. |
5695650 | Dec., 1997 | Held. | |
5698107 | Dec., 1997 | Wurzburger et al. | |
Foreign Patent Documents | |||
0971886 | Mar., 1997 | JP. | |
9809001 | Mar., 1998 | WO. |
Conventional electrolysis cells are capable of producing hydrogen and oxygen from water. These conventional cells generally include two electrodes arranged within the cell which apply energy to the water to thereby produce hydrogen and oxygen. The two electrodes are conventionally made of two different materials.
However, the hydrogen and oxygen generated in the conventional cells are generally produced in an inefficient manner. That is, a large amount of electrical power is required to be applied to the electrodes in order to produce the hydrogen and oxygen. Moreover, a chemical catalyst such as sodium hydroxide or potassium hydroxide must be added to the water to separate hydrogen or oxygen bubbles from the electrodes. Also, the produced gas must often be transported to a pressurized container for storage, because conventional cells produce the gases slowly. Also, conventional cells tend to heat up, creating a variety of problems, including boiling of the water. Also, conventional cells tend to form gas bubbles on the electrodes which act as electrical insulators and reduce the function of the cell.
Accordingly, it is extremely desirable to produce a large amount of hydrogen and oxygen with only a modest amount of input power. Furthermore, it is desirable to produce the hydrogen and oxygen with "regular" tap water and without any additional chemical catalyst, and to operate the cell without the need for an additional pump to pressurize it. It would also be desirable to construct the electrodes using the same material. Also, it is desirable to produce the gases quickly, and without heat, and without bubbles on the electrodes.
Orthohydrogen and parahydrogen are two different isomers of hydrogen. Orthohydrogen is that state of hydrogen molecules in which the spins of the two nuclei are parallel. Parahydrogen is that state of hydrogen molecules in which the spins of the two nuclei are antiparallel. The different characteristics of orthohydrogen and parahydrogen lead to different physical properties. For example, orthohydrogen is highly combustible whereas parahydrogen is a slower burning form of hydrogen.
Thus, orthohydrogen and parahydrogen can be used for different
applications. Conventional electrolytic cells make only orthohydrogen and
parahydrogen. Parahydrogen, conventionally, is difficult and expensive to
make.
Accordingly, it is desirable to produce cheaply orthohydrogen and/or
parahydrogen using a cell and to be able to control the amount of either
produced by the cell. It is also desirable to direct the produced
orthohydrogen or parahydrogen to a coupled machine in order to provide a
source of energy for the same.
It is another object of the present invention for the cell to produce
bubbles of hydrogen and oxygen which do not bunch around or on the
electrodes.
It is also an object of the present invention for the cell to properly
operate without a chemical catalyst. Thus, the cell can run merely on tap
water. Moreover, the additional costs associated with the chemical
catalyst can be avoided.
It is another object of the present invention for the cell to be
self-pressurizing. Thus, no additional pump is needed.
It is another object of the present invention to provide a cell having
electrodes made of the same material. This material can be stainless
steel, for example. Thus, the construction of the cell can be simplified
and corresponding costs reduced.
It is another object of the present invention to provide a cell which is
capable of producing orthohydrogen, parahydrogen or a mixture thereof and
can be controlled to produce any relative amount of orthohydrogen and
parahydrogen desired by the user.
It is another object of the invention to couple the gaseous output of the
cell to a device, such as an internal combustion engine, so that the
device may be powered from the gas supplied thereto.
These and other objects, features, and characteristics of the present
invention will be more apparent upon consideration of the following
detailed description and appended claims with reference to the
accompanying drawings, wherein like reference numerals designate
corresponding parts in the various figures.
Accordingly, the present invention includes a container for holding water.
At least one pair of closely-spaced electrodes are positioned within the
container and submerged under the water. A first power supply provides a
particular pulsed signal to the electrodes. A coil is also arranged in the
container and submerged under the water. A second power supply provides a
particular pulsed signal through a switch to the electrodes.
When only the electrodes receive a pulsed signal, then orthohydrogen can be
produced. When both the electrodes and coil receive pulsed signals, then
parahydrogen or a mixture of parahydrogen and orthohydrogen can be
produced. The container is self pressurized and the water within the
container requires no chemical catalyst to efficiently produce the
orthohydrogen and/or parahydrogen.
The cell includes a closed container 111 which is closed at its bottom
portion by threaded plastic base 113 and screw thread base 109. The
container 111 can be made of, for example, plexiglass and have an
exemplary height of 43 cm and an exemplary width of 9 cm. The container
111 holds tap water 110 therein.
The cell further includes a pressure gauge 103 to measure the pressure
within the container 111. An outlet valve 102 is connected to the top of
the container 111 to permit any gas within the container 111 to escape
into an output tube 101.
The cell also includes a pop valve 106 connected to a base 113. The pop
valve 106 provides a safety function by automatically releasing the
pressure within the container Ill if the pressure exceeds a predetermined
threshold. For example, the pop valve 106 may be set so that it will open
if the pressure in the container exceeds 75 p.s.i. Since the container 111
is built to withstand a pressure of about 200 p.s.i., the cell is provided
with a large safety margin.
A pair of electrodes 105a, 105b are arranged within the container 111. The
electrodes 105a, 105b are submerged under the top level of the water 110
and define an interaction zone 112 therebetween. The electrodes 105a, 105b
are preferably made of the same material, such as stainless steel.
In order to produce an optimal amount of hydrogen and oxygen, an equal
spacing between the electrodes 105a, 105b must be maintained. Moreover, it
is preferable to minimize the spacing between the electrodes 105a, 105b.
However, the spacing between the electrodes 105a, 105 cannot be positioned
excessively close because arcing between the electrodes 105a, 105b would
occur. It has been determined that a spacing of 1 mm is optimal spacing
for producing hydrogen and oxygen. Spacing up to 5 mm can work
effectively, but spacing above 5 mm has not worked well, except with
excessive power.
Hydrogen and oxygen gas outputted through output tube 101 can be
transmitted by tube 101 to a device 120 using those gases, for example an
internal combustion engine, such as shown in FIG. 1. Instead of an
internal combustion engine, device 120 may be any device using hydrogen
and oxygen, including a reciprocating piston engine, a gas turbine engine,
a stove, a heater, a furnace, a distillation unit, a water purification
unit, a hydrogen/oxygen jet, or other device using the gases. With an
adequately productive example of the present invention, any such device
120 using the output gases can be run continuously without the need for
storing dangerous hydrogen and oxygen gases.
FIG. 2 shows a second embodiment of the present invention which includes more than one pair of electrodes 205a-d. The spacing between the electrodes is less than 5 mm as in the embodiment of FIG. 1. While FIG. 2 shows only one additional pair of electrodes, it is possible to include many more pairs (e.g.,as many as 40 pairs of electrodes) within the cell. The rest of the cell illustrated in FIG. 2 remains the same as that illustrated in FIG. 1. The multiple electrodes are preferably flat plates closely spaced, parallel to each other.
FIG. 3 illustrates a cell having a cylindrically shaped electrodes 305a, 305b. The outer electrode 305b surrounds the coaxially aligned inner electrode 305a. The equal spacing of the electrodes 305a, 305b is less than 5 mm and the interactive zone is coaxially arranged between the two electrodes 305a, 305b. While FIG. 3 illustrates the top portion of the container 111 being formed by a plastic cap 301, it will be appreciated to those skill in the art that the cap 301 may be used in the embodiments of FIGS. 1-2 and the embodiment of FIG. 3 can utilize the same container 111 illustrated in FIGS. 1-2. As suggested by FIG. 3, the electrodes can be almost any shape such as flat plates, rods, tubes or coaxial cylinders.
The electrodes 105a, 105b of FIG. 1 (or electrodes 205a-d of FIG. 2 or
electrodes 305a, 305b of FIG. 3) are respectively connected to power
supply terminals 108a, 108b so that they can receive a pulsed electrical
signal from a power supply. The pulsed signal can be almost any waveform
and have a variable current level, voltage level, frequency and mark-space
ratio (i.e., a ratio of the duration of a single pulse to the interval
between two successive pulses). For example, the power supply providing
power to the electrodes can be a mains 110 volts to a 12 volt supply or a
car battery.
FIG. 4a, FIG. 4b and FIG. 4c illustrate a square wave, a saw tooth wave and
a triangular wave, respectively which can be applied to the electrodes
105a, 105b (or 205a-d or 305a, 305b) in accordance with the present
invention. Each of the waveforms illustrated in FIGS. 4a-4c has a 1:1
mark-space ratio. As shown in FIG. 4b, the saw tooth wave will only reach
a peak voltage at the end of the pulse duration. As shown in FIG. 4c, the
triangular wave has a low peak voltage. It has been found that optimal
results for producing hydrogen and oxygen in the present invention are
obtained using a square wave.
After initiation of the pulsed signal from the power supply, the electrodes
105a, 105b continuously and almost instantaneously generate hydrogen and
oxygen bubbles from the water 110 in the interaction zone 112. Moreover,
the bubbles can be generated with only minimal heating of the water 110 or
any other part of the cell. These bubbles rise through the water 110 and
collect in the upper portion of the container 111.
The generated bubbles are not bunched around or on the electrodes 105a,
105b and thus readily float to the surface of the water 110. Therefore,
there is no need to add a chemical catalyst to assist the conduction of
the solution or reduce the bubble bunching around or on the electrodes
105a, 105b. Thus, only tap water is needed for generation of the hydrogen
and oxygen in the present invention.
The gases produced within the container are self-pressurizing
(i.e.,pressure builds in the container by the production of gas, without
an air pump). Thus, no additional pump is needed to be coupled to the
container 111 and the produced gases do no need to be transported into a
pressurized container.
The power supply in the present invention is required to provide a pulsed
signal having only 12 volts at 300 ma (3.6 watts). It has been found that
an optimal amount of hydrogen and oxygen has been produced when the pulsed
signal has mark-space ratio of 10:1 and a frequency of 10-250 KHz. Using
these parameters, the prototype cell of the present invention is capable
of producing gas at the rate of 1 p.s.i. per minute. Accordingly, the cell
of the present invention is capable of producing hydrogen and oxygen in a
highly efficient manner, quickly and with low power requirements.
As noted above, the hydrogen produced by the embodiments of FIGS. 1-3 is
orthohydrogen. As is well understood by those skilled in the art,
orthohydrogen is highly combustible. Therefore, any orthohydrogen produced
can be transported from the container 111 through valve 102 and outlet
tube 101 to be used by a device such as an internal combustion engine.
The present invention, with sufficient electrodes, can generate hydrogen
and oxygen fast enough to feed the gases directly into an internal
combustion engine or turbine engine, and run the engine continuously
without accumulation and storage of the gases. Hence, this provides for
the first time a hydrogen/oxygen driven engine that is safe because it
requires no storage of hydrogen or oxygen gas.
FIG. 5 illustrates an exemplary power supply for providing D.C. pulsed
signals such as those illustrated in FIGS. 4a-4c to the electrodes
illustrated in FIGS. 1-3. As will be readily understood by those skilled
in the art, any other power supply which is capable of providing the
pulsed signals discussed above can be substituted therefor.
The power supply illustrated in FIG. 5 includes the following parts and
their exemplary components or values:
______________________________________ Astable circuit NE555 or equivalent logic circuit ______________________________________ Resistor R2 10K Resistor R3 10K Resistor R4 10K Resistor R5 2.7K Resistor R6 2.7K Transistor TR1 2N3904 Transistor TR2 2N3904 Transistor TR3 2N3055 or any high speed, high current silicon switch Diode D2 1N4007 Capacitors (not shown) Vcc by-pass capacitors as required. ______________________________________
The astable circuit is used to generate a pulse train at a specific time
and with a specific mark-space ratio. This pulse train is provided to the
base of transistor TR1 through resistor R2. Transistor TR1 operates as an
invert switch. Thus, when the astable circuit produces an output pulse,
the base voltage of the transistor TR1 goes high (i.e.,close to Vcc or
logic 1). Hence, the voltage level of the collector of transistor TR1 goes
low (i.e.,close to ground or logic 0).
Transistor TR2 also operates as an inverter. When the collector voltage of
transistor TR1 goes low, the base voltage of transistor TR2 also goes low
and transistor TR2 turns off. Hence, the collector voltage of transistor
TR2 and the base voltage of Transistor TR3 go high. Therefore, the
transistor TR3 turns on in accordance with the mark-space ratio set forth
by the astable circuit. When the transistor TR3 is on, one electrode of
the cell is connected to Vcc and the other is connected to ground through
transistor TR3. Thus, the transistor TR3 can be turned on (and off) and
therefore the transistor TR3 effectively serves as a power switch for the
electrodes of the cell.
FIGS. 6-8 illustrate additional embodiments of the cell which are similar
to the embodiments of FIGS. 1-3, respectively. However, each of
embodiments of FIGS. 6-8 further includes a coil 104 arranged above the
electrodes and power supply terminals 107 connected to the coil 104. The
dimensions of the coil 104 can be, for example, 5.times.7 cm and have, for
example, 1500 turns. The coil 104 is submerged under the surface of the
water 110.
The embodiments of FIGS. 6-8 further include an optional switch 121 which
can be switched on or off by the user. When the switch 121 is not closed,
then the cell forms basically the same structure as FIGS. 1-3 and thus can
be operated in the same manner described in FIGS. 1-3 to produce
orthohydrogen and oxygen. When the switch 121 is closed, the additional
coil 104 makes the cell capable of producing oxygen and either (1)
parahydrogen or (2) a mixture of parahydrogen and orthohydrogen.
When the switch 121 is closed (or not included), the coil 104 is connected
through terminals 106 and the switch 121 (or directly connected only
through terminals 106) to a power supply so that the coil 104 can a
receive a pulsed signal. As will be discussed below, this power supply can
be formed by the circuit illustrated in FIG. 9.
When the coil 104 and the electrodes 105a, 105b receive pulses, it is
possible to produce bubbles of parahydrogen or a mixture of parahydrogen
and orthohydrogen. The bubbles are formed and float to the surface of the
water 110 as discussed in FIGS. 1-3. When the coil is pulsed with a higher
current, a greater amount of parahydrogen is produced. Moreover, by
varying the voltage of the coil 104, a greater/lesser percentage of
orthohydrogen/parahydrogen can be produced. Thus, by controlling the
voltage level, current level and frequency (discussed below) provided to
the coil 104 (and the parameters such as voltage level, current level,
frequency, mark-space ratio and waveform provided to the electrodes 105a,
105b as discussed above) the composition of the gas produced by the cell
can be controlled.
For example, it is possible to produce only oxygen and orthohydrogen by simply disconnecting the coil 104. It is also possible to produce only oxygen and parahydrogen by providing the appropriate pulsed signals to the coil 104 and the electrodes 105a, 105b. All of the benefits and results discussed in connection with the embodiments of FIGS. 1-3 are equally derived from the embodiments of FIGS. 6-8. For example, the cells of FIGS. 6-8 are self-pressurizing, require no-chemical catalyst, do not greatly heat the water 110 or cell, and produce a large amount of hydrogen and oxygen gases from a modest amount of input power, without bubbles on the electrodes.
A considerable amount of time must pass before the next pulse provides
current to the coil 104. Hence, the frequency of the pulsed signal is much
lower than that provided to the electrodes 105a, 105b. Accordingly, with
the type of coil 104 having the dimensions described above, the frequency
of pulsed signals can be as high as 30 Hz, but is preferably 17-22 Hz to
obtain optimal results.
Parahydrogen is not as highly combustible as orthohydrogen and hence is a
slower burning form of hydrogen. Thus, if parahydrogen is produced by the
cell, the parahydrogen can be coupled to a suitable device such as a
cooker or a furnace to provide a source of power or heat with a slower
flame.
FIG. 9 illustrates an exemplary power supply for providing D.C. pulsed signals such as those illustrated in FIGS. 4a-4c to the electrodes illustrated in FIGS. 6-8. Additionally, the power supply can provide another pulsed signal to the coil. As will be readily understood by those skilled in the art, any other power supply which is capable of providing the pulsed signals discussed above to the electrodes of the cell and the coil can be substituted therefor. Alternatively, the pulsed signals provided to the electrodes and the coil can be provided by two separate power supplies.
The portion of the power supply (astable circuit, R2-R6, TR1-TR3, D2)
providing a pulsed signal to the electrodes of the cell is identical to
that illustrated in FIG. 5. The power supply illustrated in FIG. 9 further
includes the following parts and their respective exemplary values:
______________________________________ Divide by N counter 4018 BPC or equivalent logic circuit Monostable circuit NE 554 or equivalent logic circuit Resistor R1 10K Transistor TR4 2N3055 or any high speed high current silicon switch Diode D1 1N4007. ______________________________________
The diode D2 prevents any induced back emf generated within the coil from damaging the rest of the circuit. As illustrated in FIGS. 6-8, a switch 121 can also incorporated into the circuit to allow the user to switch between (1) a cell which produces orthohydrogen and oxygen, and (2) a cell which produces at least parahydrogen and oxygen.
The high/low switching of the collector voltage of the transistor TR1 provides a pulsed signal to the divider. The divider divides this pulsed signal by N (where N is a positive integer) to produce an pulsed output signal. This output signal is used to trigger the monostable circuit. The monostable circuit restores the pulse length so that it has a suitable timing. The output signal from the monostable circuit is provided to the base of the transistor TR4 through resistor R1 to switch the transistor TR4 on/off. When the transistor TR4 is switched on, the coil is placed between Vcc and ground. When the transistor TR4 is switched off, the coil is disconnected from the rest of the circuit. As discussed in conjunction with FIGS. 6-8, the frequency of pulse signal provided to the coil is switched at a rate preferably between 17-22 Hz; i.e.,much lower than the frequency of the pulsed signal provided to the electrodes.
As indicated above, it is not required that the circuit (divider,
monostable circuit, R1, TR4 and D1) providing the pulsed signal to the
coil be connected to the circuit (astable circuit, R2-R6, TR1-TR3, D2)
providing the pulsed signal to the electrodes. However, connecting the
circuits in this manner will provide an easy way to initiate the pulsed
signal to the coil.
A working prototype of the present invention has been successfully built
and operated with the exemplary and optimal parameters indicated above to
generate orthohydrogen, parahydrogen and oxygen from water. The output gas
from the prototype has been connected by a tube to the manifold inlet of a
small one cylinder gasoline engine, with the carburetor removed, and has
thus successfully run such engine without any gasoline.
Additional advantages and modifications will readily occur to those skilled
in the art. Therefore, the present invention is not limited to the
specific details and representative devices shown and described herein.
Accordingly, various modifications may be made without departing from the
spirit or scope of the invention as defined by the appended claims.
Visit Xogen to to view online movie